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Motion of a gyrostat in a Newtonian gravity field is investigated near its resonance 
frequency using the canonical action-angle variables, An approximate solution is con- 

structed by using the method of averaging of the Delaunay - Hill type Cl]. 
We investigate the motion of a gyrostat about a fixed point in a Newtonian gravity 

field using the methods of the perturbation theory [2]. Rotation of a rigid body corres- 

ponding to the Euler - Poinsot case serves as the unperturbed motion. 
Such a choice of the unperturbed motion is expedient either in the case of a rapidly 

spinning gyrostat, or when the body is sufficiently far from the center of attraction [3]. 
The methods of the perturbation theory are especially effective when the equations of 

perturbed motion are written in the Hamiltonian form using the canonical action-angle 
variables. The latter variables were studied in [4- 7 ] for the Euler- Poinsot case. 

Let us first write the Hamiltonian of the problem in the action -angle variables 

[S]. The kinetic energy of the gyrostat is determined by the formula [83 

T = 1/a (Ap* + Bq8 + Cr”) + J (Pa + qfi + ry) + Va J2Qa 

Here A, B and C are the principal moments of inertia of the rigid body : p, q 
and r are the angular velocity components relative to the moving axes; a, fi and 

y are the direction cosines of the rotor (gym wheel) axis relative to the moving 
axes ; J is the moment of inertia of the rotor relative to the axis of rotation ; ~2 

is the relative angular velocity of the rotor (Q = const). On passing to the canonical 

action-angle variables where I,, I,9 1st 'pl9 'p2 and ‘ps are equal to the correspon - 

ding variables L, G, I, h, v and f of [5],the kinetic energy of the gyrostat will 
assume the following form for the regions of rotational motion: 
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P= p&s ’ q=exp -rtg ( \ 
I 

where K and K' arecomplete elliptic integrals with moduli h and h’ = VI - h2 

respectively. 
Let us now transform the force functions of theNewtonian gravity field which has the 

form 
U = - $ (/iy13 + By,” + Cy,‘) 

where yl, yz and ys are the direction cosines of the radius vector of the fixed point 
with the origin at the center of attraction. 

Expressing yl, ya and y3 in terms of the action-angle variables and using the 

Fourier expansions obtained in [ 5 1, we arrive at the following expressions : 
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ts = -g- F ( arctg q ( h’ ) 
where F (cp, h) is an elliptic integral of the first hind. 

Thus the perturbed Hamiltonian (the perturbations are caused by the presence of 
the rotor and by the Newtonian gravity field) can be written using the the action-angle 
variables in the form of a series suitable for use with the asymptotic methods. 
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Using the method of averaging, we can replace the system of equations of pertur - 
bed motion 

CV, f3H “Pi r=-- -=$ (i=l, 2, 3) (1) 
dt a’Fi ’ at i 

by a simplified system which allows integration in quadratures, 

Introducing a small parameter e, we can write the Hamiltonian function in the 

form 
H = H, -I- eH, + . . . (2) 

where Ho is the Hamiltonian function corresponding to the unperturbed motion and 

eH, is the perturbing function. The small parameter is introduced in the following 

manner : 
J 3g 

e=A, ke=w 

where k is a finite quantity. 
We explain the evolutionary properties of the perturbed motion of the gyrostat 

using one of the variants of the method of averaging over the rapid angle variable first 
introduced in celestial mechanics by Delaunay and Hill. This method is expedient in 

the case of “sharp commensurability” of the frequencies, i. e. in the neighborhood of 
the internal resonance of the system. Assuming that the unperturbed motion is near to 

the perturbed motion in terms of the angle variables ‘pa and ‘ps, we introduce a new 

angle variable d which is called, in celestial mechanics, the Delaunay anomaly 

d = klcps + k,cp, (3) 

where kl and k, are certain specified positive integrals. This variable charact - 

crises the ” dehming” of the resonance. 
Let us perform the canonical transformation of the variables Ii and vi to the 

new variables Ii* and ‘pi” (i = 1,2,3) using the relations 

I,* = I,, cp1* = ‘pl (4) 

zz* = + 1.2. cps* = d = k,cp, + kZqY 

I,* = I3 - -5 II, 
k, 

cps* = ‘ps 

From (3 ) we find 
(5) 

Substituting (5) into the equation describing the perturbed function, we obtain 

H (11, I,, I,, ‘PI, ‘pa, (~3) = HI (1,. I,, Is, d, CP,) 

The averaged value of the Hamiltonian is obtained by computing its mean value 
with respect to vs with the remaining variables kept fixed.Using (4) we write the 

averaged value of the perturbed function in the form 

(‘5) 
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The averaged equations of the perturbed motion have the following structures: 

Hi* z2* 
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(7) 
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ai+ aG.* 
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The averaged system of ec@ations (7 ) has three first integrals 

II* = G,, ?,* = G,, &*(I,*, Z$, Z,*, e, d) = G3 (9) 

and using (8 ) we reduce the problem to quadratures . The third (transcendental) se - 
lation of (8 ) yields the action in the form of a series in e 

Z,* = Is* (4 e) (9) 

The relation (9) can be written as a Fourier series the coefficients of which are 
power series in e. Clearly, when the proposed method of solving the problem is used, 
the expression for f,* will not contain secular p~~rbatio~ but only the long - period 
perturbations through the anomaly d. The coefficients of the long-period pertur - 
bations will be the greater, the “sharper” the commensurability of the frequencies. 

Thus the differential equation for &* , yields the relation 
G2* 

t=t,= s w2* 
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Now %a’ and I,* are known functions of time. This enables us to obtain %* 
and &,* as iimctions of time 

t 

cp.* -FTo = CD. (t)dt 
1 c 1 

(d = 1, 3) * 
0 

In accordance with the proofs of the asymptotic methods Cl]* the inequalities 
lfi - Ii 1 < P hold for any p > 0 , for some 80 (p) and for all e E 10, eOl and 
t E [O, U&l The canonical variables ri characterize the behavior of the per - 

turbed rotors l At relatively small e the trajectories of perturbed motion wind them- 
selves onto slightly deformed toruses. 

Thus the solutions of the averaged equations obtained represent qualitatively, as 
well as quantitatively, with a great degree of accuracy, the actual motion of a gyrostat 
in a Newtonian gravity field in the region of a single internal resonance, 

The author thanks Demin for supervision of the present work. 
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