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Motion of a gyrostat in a Newtonian gravity field is investigated near its resonance
frequency using the canonical action-angle variables, An approximate solution is con-
structed by using the method of averaging of the Delaunay — Hill type [1].

We investigate the motion of a gyrostat about a fixed point in a Newtonian gravity
field using the methods of the perturbation theory [2]. Rotation of a rigid body corres-
ponding to the Euler — Poinsot case serves as the unperturbed motion,

Such a choice of the unperturbed motion is expedient either in the case of a rapidly
spinning gyrostat, or when the body is sufficiently far from the center of attraction [3].
The methods of the perturbation theory are especially effective when the equations of
perturbed motion are written in the Hamiltonian form using the canonical action-angle
variables, The latter variables were studied in [4— 7] for the Euler— Poinsot case,

Let us first write the Hamiltonian of the problem in the action -angle variables
[5]. The kinetic energy of the gyrostat is determined by the formula [8]

T =1/, (Ap*+ Bg® + Cr?) + J (Pa -+ qf + ry) + 1/, J2Q2

Here 4,B and C are the principal moments of inertia of the rigid body: p, ¢

and r are the angular velocity components relative to the moving axes; o, § and

y are the direction cosines of the rotor (gyro wheel) axis relative to the moving
axes; J isthe moment of inertia of the rotor relative to the axis of rotation; Q
is the relative angular velocity of the rotor (Q = const). On passing to the canonical
action-angle variables where Iy, I, I3, ¢, ¢, and @3 are equal to the correspon -
ding variables L,G,I,h,v and f of[5],the kinetic energy of the gyrostat will
assume the following form for the regions of rotational motion:
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where K and K’ arecomplete elliptic integralswithmoduli A and A’ = V1T—A2
respectively,

Letus now transform the force functions of the Newtonian gravity field which has the
form 3¢
U= ——5pg 4y’ + By? -+ Cys?)

where ¥i, ¥. and vy are the direction cosines of the radius vector of the fixed point
with the origin at the center of attraction.

Expressing v;, yo and vs in terms of the action-angle variables and using the
Fourier expansions obtained in [5], we arrive at the following expressions
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where F (o, &) is an elliptic integral of the first kind.

Thus the perturbed Hamiltonian (the perturbations are caused by the presence of
the rotor and by the Newtonian gravity field) can be written using the the action-angle
variables in the form of a series suitable for use with the asymptotic methods.,



On an averaging method in dynamics 187

Using the method of averaging , we can replace the system of equations of pertur-

bed motion ol 5
i oH P; oH
w =3y, @ —° (=129 )
¢; Jt al;

by a simplified system which allows integration in quadratures,
Introducing a small parameter e, we can write the Hamiltonian function in the

form
H=Hy-+eH +... (2)

where H, is the Hamiltonian function corresponding to the unperturbed motion and
eH, is the perturbing function, The small parameter is introduced in the following
manner

where % s a finite quantity.

We explain the evolutionary properties of the perturbed motion of the gyrostat
using one of the variants of the method of averaging over the rapid angle variable first
introduced in celestial mechanics by Delaunay and Hill, This method is expedient in
the case of "sharp commensurability” of the frequencies,i,e. in the neighborhood of
the intenal resonance of the system, Assuming that the unperturbed motion is near to
the perturbed motion in terms of the angle variables @, and @3, we introduce a new
angle variable d which is called, in celestial mechanics, the Delaunay anomaly

d = k195 + k;Py (8)

where k; and k, are certain specified positive integrals, This variable charact~
erises the "detuning" of the resonance,

Let us perform the canonical transformation of the variables I; and ¢; to the
new variables I;* and ¢;* (i = 1,2,3) using the relations

I¥*=1,, ¢*=¢ (4)

1
It =4~ Iy,  @o* =d =ki@y + ka4

k.
13*=I3——k—:;12, Qs* = @3
From (3 ) we find

d k 5
q>2=k—l'-—-—k-i—(ps ( )

Substituting (5) into the equation describing the perturbed function, we obtain

H (I, Iy, I3, @1, §y 93) = Hy Iy, Iy, I3, d, @)
The averaged value of the Hamiltonian is obtained by computing its mean value
with respect to @, with the remaining variables kept fixed . Using (4) we write the
averaged value of the perturbed function in the form
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The averaged equations of the perturbed motion have the foilowing structures:

ol YR M
S =0, —— =@ (I%, I* I*, d) (i=1, 3)
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The averaged system of equations (7) has three first integrals
I*=Cy, I*=Cp H¥ (I, I¥ I* e, d)=Cs ®)

and using (8) we reduce the problem to quadratures, The third (transcendental} re-
lation of (8) yields the action in the form of a series in &
Ix=I*, ¢ 9)

The relation (9) can be written as a Fourier series the coefficients of which  are
power series in  &. Clearly , when the proposed method of solving the problem is used,
the expression for I,* will not contain secular perturbations but only the long- period
perturbations through the anomaly d. The coefficients of the long-period pertur -
bations will be the greater, the “"sharper" the commensurability of the frequencies,

Thus the differential equation for Ty* , yields the relation

ok
et e %S dog*
- @y + @ Ik, I*, I*, gg*)
P20

Now @* and I,* are known functions of time, This enables us to obtain §,*

and {y* as functions of time
t

@*"‘5?3 = S‘Di (hdt (1=1,3)
0
In accordance with the proofs of the asymptotic methods [1], the inequalities
if; = I; | < ¢ hold for any p >0 , forsome & () and forall & [0, e and
t e [0, 1/¥Vel The canonical variables I; characterize the behavior of the per-
turbed rotors, At relatively small e the trajectories of perturbed motion wind them-
selves onto slightly deformed toruses,
Thus the solutions of the averaged equations obtained represent qualitatively, as
well as quantitatively , with a great degree of accuracy, the actual motion of a gyrostat
in a Newtonian gravity field in the region of a single internal resonance,

The author thanks Demin for supervision of the present work,
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